More Classical Problems

¢ Part 1: Vector Clocks
e Part 2: Distributed Snapshots
¢ Part 3: Termination Detection

¢ Part 4: Leader Election
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Total Order

* Create total order by attaching process number to an event. If time stamps

match, use process # to order
P1 P2 P3
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Example: Totally-Ordered Multicasting

e Updating a replicated database and leaving it in an inconsistent state.

% Update1 Update 2 _i

. Replicated database .
Update 1 is P Update 2 is
performed before performed before
update 2 update 1
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Algorithm

 Totally ordered multicasting for banking example
e Update is timestamped with sender’s logical time
e Update message is multicast (including to sender)

* When message is received
It is put into local queue
Ordered according to timestamp,
Multicast acknowledgement
Message is delivered
It is at the head of the queue
IT has been acknowledged by all processes
e P_isends ACKto P_j if
— P_i has not made a request
— P_iupdate has been processed and P_i’'s ID > P_j’s Id
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Causality

* Lamport’s logical clocks
e If 4->Bthen C4) < C(B)
* Reverse is not true!!
¢ Nothing can be said about events by comparing time-stamps!
e If C(4) < C(B), then ??
* Need to maintain causality
e If a-> b then a is casually related to b
* Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
* Capture causal relationships between groups of processes
* Need a time-stamping mechanism such that:

e If T(4) < T(B) then 4 should have causally preceded B
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Vector Clocks

» Each process i maintains a vector V;

« Vi[i] : number of events that have occurred at |

« V./[j] : number of events | knows have occurred at process j
» Update vector clocks as follows

* Local event: increment V|[I]

¢ Send a message :piggyback entire vector V

* Receipt of a message: V/k] = max( V,[k].V[k] )

* Receiver is told about how many events the sender knows occurred at another process &

e Also Vi[j] = Vi[j]+1

* Exercise: prove that if V(4)<V(B), then 4 causally precedes B and the other way around.
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Vector Clock Example

* Vector clocks for three processes
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Enforcing Causal Communication

e Figure 6-13. Enforcing causal communication.

VC, = (1,0,0) VC, = (1,1,0)
| L
1

VC,=(1,1,0) VC,=(1,1,0)
P2 I I\A= 2

VC,=(0,00) VC,=(1,0,0)

0
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Part 2: Global State

¢ Global state of a distributed system
e Local state of each process
* Messages sent but not received (state of the queues)
e Many applications need to know the state of the system
 Failure recovery, distributed deadlock detection
e Problem: how can you figure out the state of a distributed system?
e Each process is independent
* No global clock or synchronization

 Distributed snapshot: a consistent global state
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Global State (1)

Consistent cut Inconsistent cut
P1 Time —» P1
m1 ;_\_7,_,-—/’/ m3 m1 J— ’
P2 X P2 p
\ i
. m2 .
P3 X P3 ,

Sender of m2 éannot
be identified with this cut
@ (b)

University of
Massachusetts | CS 677: Distributed and OS
Ambherst

Lec. 13

Lec. 13



Distributed Snapshot Algorithm

* Assume each process communicates with another process using unidirectional
point-to-point channels (e.g, TCP connections)

* Any process can initiate the algorithm
e Checkpoint local state
* Send marker on every outgoing channel

¢ On receiving a marker

* Checkpoint state if first marker and send marker on outgoing channels, save
messages on all other channels until:

* Subsequent marker on a channel: stop saving state for that channel
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Distributed Snapshot

e A process finishes when

* |t receives a marker on each incoming channel and processes them all

e State: local state plus state of all channels

* Send state to initiator y
* Any process can initiate snapshot ’ x
e Multiple snapshots may be in progress ©
* Each is separate, and each is distinguished by tagging the marker with the
initiator ID (and sequence number)

B
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Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

Incoming Outgoing
message Process State message

R

= >
Q —{1»

Local
Marker é filesystem

(a)
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Snapshot Algorithm Example

b)  Process Q receives a marker for the first time and records its local state
C) Qrecords all incoming message

d) Q receives a marker for its incoming channel and finishes recording the state of the incoming channel
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Part 3: Termination Detection

¢ Detecting the end of a distributed computation

* Notation: let sender be predecessor, receiver be successor

e Two types of markers: Done and Continue

 After finishing its part of the snapshot, process QO sends a Done or a Continue to its predecessor

¢ Send a Done only when
— All of O’s successors send a Done

— Q has not received any message since it check-pointed its local state and received a marker on all incoming
channels

— Else send a Continue

e Computation has terminated if the initiator receives Done messages from everyone
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Part 4: Election Algorithms

* Many distributed algorithms need one process to act as coordinator
— Doesn’t matter which process does the job, just need to pick one
* Election algorithms: technique to pick a unique coordinator (aka leader election)

* Examples: take over the role of a failed process, pick a master in Berkeley
clock synchronization algorithm

* Types of election algorithms: Bully and Ring algorithms
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Bully Algorithm

¢ Each process has a unique numerical ID
e Processes know the Ids and address of every other process
e Communication is assumed reliable
» Key Idea: select process with highest ID
* Process initiates election if it just recovered from failure or if coordinator failed
* 3 message types: election, OK, I won
e Several processes can initiate an election simultaneously
— Need consistent result

e O(n?) messages required with n processes
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Bully Algorithm Details

* Any process P can initiate an election

e P sends Election messages to all process with higher Ids and awaits OK
messages

* If no OK messages, P becomes coordinator and sends / won messages to all
process with lower Ids

e [f it receives an OK, it drops out and waits for an 7 won
e |f a process receives an Election msg, it returns an OK and starts an election

* |f a process receives a [ won, it treats sender an coordinator
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Bully Algorithm Example

2%0 o%0 oY

e

ok
4 Election 6 4 OK 5 @
%,
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Previous coordinator
has crashed

@ (b) (©

C}/r.
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. The bully election algorithm
. Process 4 holds an election
. Process 5 and 6 respond, telling 4 to stop

. Now 5 and 6 each hold an election
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Bully Algorithm Example

@@q
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d) Process 6 tells 5 to stop

€) Process 6 wins and tells everyone
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Ring-based Election

* Processes have unique Ids and arranged in a logical ring
¢ Each process knows its neighbors
— Select process with highest ID
* Begin election if just recovered or coordinator has failed
* Send Election to closest downstream node that is alive
— Sequentially poll each successor until a live node is found
¢ Each process tags its ID on the message
* |nitiator picks node with highest ID and sends a coordinator message
* Multiple elections can be in progress

— Wastes network bandwidth but does no harm
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A Ring Algorithm

Electlon message
]

(2)

§ [2.3]
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Previous coordinator
has crashed

No response

e Election algorithm using a ring.
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Comparison

e Assume n processes and one election in progress

e Bully algorithm
— Worst case: initiator is node with lowest 1D
e Triggers n-2 elections at higher ranked nodes: O(n?) msgs
— Best case: immediate election: n-2 messages
* Ring
— 2 (n-1) messages always
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