
CS 677: Distributed and OS Lec. 13

More Classical Problems
• Part 1: Vector Clocks

• Part 2: Distributed Snapshots

• Part 3: Termination Detection

• Part 4: Leader Election

1

CS 677: Distributed and OS Lec. 13

Total Order
• Create total order by attaching process number to an event. If time stamps

match, use process # to order

2

a

b

P1 P2 P3

c

d

e

f

g

h

i

j

k

l

1.1 1.2

1.32.1
3.2

2.33.1

4.1 4.2

5.2

6.2

3.3

CS 677: Distributed and OS Lec. 13

Example: Totally-Ordered Multicasting
• Updating a replicated database and leaving it in an inconsistent state.

3

CS 677: Distributed and OS Lec. 13

Algorithm

● Totally ordered multicasting for banking example
● Update is timestamped with sender’s logical time

● Update message is multicast (including to sender)

● When message is received
! It is put into local queue
! Ordered according to timestamp,
! Multicast acknowledgement

! Message is delivered
! It is at the head of the queue
! IT has been acknowledged by all processes
! P_i sends ACK to P_j if
– P_i has not made a request
– P_i update has been processed and P_i’s ID > P_j’s Id

4

CS 677: Distributed and OS Lec. 13

Causality
• Lamport’s logical clocks

• If A -> B then C(A) < C(B)

• Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!

• If C(A) < C(B), then ??

• Need to maintain causality

• If a -> b then a is casually related to b

• Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)

• Capture causal relationships between groups of processes

• Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

5

CS 677: Distributed and OS Lec. 13

Vector Clocks
• Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at I

• Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows

• Local event: increment Vi[I]

• Send a message :piggyback entire vector V

• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows occurred at another process k

• Also Vj[j] = Vj[j]+1

• Exercise: prove that if V(A)<V(B), then A causally precedes B and the other way around.

6

CS 677: Distributed and OS Lec. 13

Vector Clock Example
• Vector clocks for three processes

7

CS 677: Distributed and OS Lec. 13

Enforcing Causal Communication
• Figure 6-13. Enforcing causal communication.

8

CS 677: Distributed and OS Lec. 13

Part 2: Global State
• Global state of a distributed system

• Local state of each process

• Messages sent but not received (state of the queues)

• Many applications need to know the state of the system

• Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a distributed system?

• Each process is independent

• No global clock or synchronization

• Distributed snapshot: a consistent global state

9

CS 677: Distributed and OS Lec. 13

Global State (1)

10

CS 677: Distributed and OS Lec. 13

Distributed Snapshot Algorithm
• Assume each process communicates with another process using unidirectional

point-to-point channels (e.g, TCP connections)

• Any process can initiate the algorithm

• Checkpoint local state

• Send marker on every outgoing channel

• On receiving a marker

• Checkpoint state if first marker and send marker on outgoing channels, save
messages on all other channels until:

• Subsequent marker on a channel: stop saving state for that channel

11

CS 677: Distributed and OS Lec. 13

Distributed Snapshot
• A process finishes when

• It receives a marker on each incoming channel and processes them all

• State: local state plus state of all channels

• Send state to initiator

• Any process can initiate snapshot

• Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the marker with the
initiator ID (and sequence number)

12

A

C

B

M

M

CS 677: Distributed and OS Lec. 13

Snapshot Algorithm Example
a) Organization of a process and channels for a distributed snapshot

13

CS 677: Distributed and OS Lec. 13

Snapshot Algorithm Example
b) Process Q receives a marker for the first time and records its local state

c) Q records all incoming message

d) Q receives a marker for its incoming channel and finishes recording the state of the incoming channel

14

CS 677: Distributed and OS Lec. 13

Part 3: Termination Detection
• Detecting the end of a distributed computation

• Notation: let sender be predecessor, receiver be successor

• Two types of markers: Done and Continue

• After finishing its part of the snapshot, process Q sends a Done or a Continue to its predecessor

• Send a Done only when

– All of Q’s successors send a Done

– Q has not received any message since it check-pointed its local state and received a marker on all incoming
channels

– Else send a Continue

• Computation has terminated if the initiator receives Done messages from everyone

15

Compsci 677: Distributed and OS Lec. 13

Part 4: Election Algorithms
• Many distributed algorithms need one process to act as coordinator

– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a master in Berkeley
clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

16

Compsci 677: Distributed and OS Lec. 13

Bully Algorithm
• Each process has a unique numerical ID

• Processes know the Ids and address of every other process

• Communication is assumed reliable

• Key Idea: select process with highest ID

• Process initiates election if it just recovered from failure or if coordinator failed

• 3 message types: election, OK, I won

• Several processes can initiate an election simultaneously

– Need consistent result

• O(n2) messages required with n processes

17

Compsci 677: Distributed and OS Lec. 13

Bully Algorithm Details
• Any process P can initiate an election

• P sends Election messages to all process with higher Ids and awaits OK
messages

• If no OK messages, P becomes coordinator and sends I won messages to all
process with lower Ids

• If it receives an OK, it drops out and waits for an I won

• If a process receives an Election msg, it returns an OK and starts an election

• If a process receives a I won, it treats sender an coordinator

18

Compsci 677: Distributed and OS Lec. 13

Bully Algorithm Example

• The bully election algorithm

• Process 4 holds an election

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election
19

Compsci 677: Distributed and OS Lec. 13

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

20

Compsci 677: Distributed and OS Lec. 13

Ring-based Election
• Processes have unique Ids and arranged in a logical ring

• Each process knows its neighbors

– Select process with highest ID

• Begin election if just recovered or coordinator has failed

• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found

• Each process tags its ID on the message

• Initiator picks node with highest ID and sends a coordinator message

• Multiple elections can be in progress

– Wastes network bandwidth but does no harm

21

Compsci 677: Distributed and OS Lec. 13

A Ring Algorithm

• Election algorithm using a ring.

22

Compsci 677: Distributed and OS Lec. 13

Comparison
• Assume n processes and one election in progress

• Bully algorithm

– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs

– Best case: immediate election: n-2 messages

• Ring

– 2 (n-1) messages always

23

